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By S. A, Ambartsumyan

1. INITTAL ASSUMPTIONS

We shall consider a thin-walled, sufficiently shallow and aniso-
tropic shell whose material, at each point, has a p e of elastic
symmetry parellel to the middle surface of the shell.

For the coordinate surface of this shell, we take the middle sur-
face in curvilinear orthogonsal coordinates o and B, coinciding with
the lines of curvature. Let ki = ky(«,B), kp = kp(a,B) be the principal

curvatures of the coordinate surface, and A = A{a,B), B = B(a,B), be the
coefficients of the first quadratic form.

In regard to the shell, we make the following simplifying assump-
tions:

(1) The hypothesis of Kirchhoff-Love (ref. 2) shows that the recti-
linear elements of the shell normal to the middle surface meintain their
initial length after deformastion of the shell, and remain rectilinear
and normal to this surface. The error of this hypothesis, shown in ref-
erence 3, has a value of the order of (8k) compared with unity, where &
is the constant thickness of the shell.

(2) The parameters A(a,B) and B(a,B) are regarded as constants
in differentiation (ref. 4).

(3) Certain terms of secondary significance are neglected (ref. 5).

*ng teorii anizotropnykh pologikh obolochek." Prik. Mat. i Mekh.,
vol. XIT, 1948, pp. 75-80.

1p solution of the analogous problem for & plate has been given by
S. G. Lekhnitskii (ref. 1).
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2. EQUATIONS OF EQUILIBRIUM AND RELATIONS BETWEEN
DEFORMATIONS AND STRESSES

The conditions of equilibrium of an element of & shell, for our
initlal assumptions, are expressed by the equations

oTy d3s .
Bgm +AS +aBX =0 | )
BTE 3

0]

S
AW-FBE-FABY

- (kT + kpTp) + %[% (BN;) + % (ANB)]+ Z=0

(2.1)

OH 2
B Se - A 3 ABNs = O

3 ., 9% |
-A$-+B&—+ABN1= 0
Sl + Sz + lel + szz =0 . J '

The last relation, in-virtue of the formulas expressing the forces and
moments through deformation of the mlddle surface, is an identity.

For the deformations and the parameters of the changes in curvature,
we have - i

1 du 1 dv 1du B 1dv
1 =X 3q T E¥ ®2 =3 3Bt kow © =538 tE % (2.2)
- 1 d%w _ 2 %

where u = u(a,B), v = v(a,B) are the displacements in the middle sur-
face along the coordinste lines, and w = w(a,B) is the normal displace-
ment.

In equation (2.3) we neglected the components u _ and v in com-
parison with the component w. Hence, these relations do not differ
from the corresponding expressions for plates, This interpretation of
the change in curvature for the general case was originally given by
V. S. Viasov (ref. 5).

922%
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Of the three differential relations given by A. L. Goldenveizer
(ref. 6), for the case under consideration, only the last one is re-

quired:

2 2
o€ 2 0%
1 2 1 d“w 1 1
KoXs + KXo + = ——— o = fo—— —— (2:.4)
2% T P12 T p2 3q2 - AB JodB T B2 yp2

The equations of the generalized Hooke's law in the chosen triortho-
gonal curvilinear system of coordinates are

0q = Al1%q + Argeg * Aizer + Ajgsqg |

op = Ajgeq + Apzep + Apzey + Apgeqg

oy = Ayzeq + Apzep + Azzey + Azgeqg (2.5)
Tor = PaaCpr * Aestar (
Tax = A45eBT + A55ewr
Tap = f1e% * f26% *Ase%r tRec%ap

In the case under considerations for Oy = 0, we have

g Blledl + BlzeB + BlsemB

04
og = Bige, + BzzeB + stecm3 (2.8)
‘rGB = Blsea + steB + BGGeaB

where, following S. G. Lekhnitskii's theories (ref. 1), there is intro-
duced the notation

Bix = (Ajihzz - Ayzhyz) Az (i,k = 1,2,6)

These stresses produce the following internal generalized forces:
tangential T, S, bending, and torsional moments G, H, which, on the
two principal sections « = constent and P = constant, have the form
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Ty = 8(B1181 + B12€2 + Bign) - \
Tz = 5<B2232 -+ Blzsl + BZGU-))

53
Gy = - 75 (Braxy + Bygxp + Byg7)

.. _ 2.7)

_ §° > (
Gz = - 35 (Bggxp + Bygxy + BagT)
81 = - 83 = 5 = 8(Bgg + Byg¥ + Bpgep)
_ 53 -

H) = - Hy = H = - 75 (Bgg® + Bigx) + Bpexa) |

Substituting the values Gi, G2 in equation (2.1), and H from
equation (2.7), we obtain . '

8% 52

Ny = - 73 C(Bix)w Nz = - 75 D(Byy)w ' (2.8)

where

1 % 1 3%

1 3% 1 33 y A B

C(Byy) =By, B33 +3B, P + (B, ,+2B
3 3 3 3 (=)
19 1 3 . 1 9 1 3
D(Bsy) = Bog = —= +3Bop —5— ===+ (By o4+2Bpp) —x ==+ Bip =5 —
1?7722 53 3p3 T 26 p2y 3p%3q - “2 00' mAZ 3p3e2 18 23 33

3. FUNDAMENTAL DIFFERENTTATL EQUATIONS

For the unknowns, teke u(w,B), v{a,B), and w(a,p}. If &g, €y,
®, ki, ky, and T from equation (2.2) and equation (2.3) are substituted
in equation (2.7), T, Ty 8, Gy, Gy, and H can be determined as func-

tions of wu, v, and w.

Further, substituting the values of the internal forces in the equa-
tions of equilibrium, and considering equation (2.8), there is obtained
& complete system of equations for the three principal unknown param-
eters, nemely, u, v, and w. This system, following the work of V., Z.
Viasov (ref. 5), is presented in table I.

922%
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The equations (see 3.1, teble I, connecting the unknowns u, v, W),
and boundary conditions meke it possible to investigate the problem of
the equilibrium of thin-walled, shallow, and anisotroplic shells by the
method of displacements. The integration of this system is, however,
connected with very great difficulties. Meking use of the method proposed
by V. Z. Vliasov (ref. 5), for isotropic and enisotroplc shells, the prob-
lem can be reduced to & system of two simultaneous equations.

We shall assume that X =Y = 0, that is, if the case of a surface
with a normal load is considered.

Setting

2 2
P 1 o% 1 %
382 T2 =232 5 = - 55 555 (3-2)

Q/

L

T =
L BZ

Q/

the first two equations of equilibrium ere identically satisfied. Further,
taking account of equations (2.3) and (3.2), we obtain, from equation (2.4)
and the third equations of equations (2.1)

1 %y 1 % 1
-2 = == + k1 =5 =] + 55 L1(Bix)e = O
( A% 3a2 = 132 3p2) B 1(B1x)

(3.3)
1 3% 1 d%p\ &5
(k. Bz 562+k2 AZ&? +l—2L(Bik)W—Z=O
where
L1(Byy) = 57— (B11Bge - B:Ls) a + 2(By1Bgg ~ BygBig) Ca
A3B aaﬁaa
1 d4
(B11B22 - Bzz) - 2(BqoBgg - BigBop)| -5 ———s +
[ 1 12Bgs - Big 26] 25 3aPai?
1 af 1 84}
2(BooBig - ByoBog) —% ——= + (BoosBpe - B2p) — —r 3.4
22816 - P1zPee) 3 S 173 (Ba2Bgg - BSg) % 332 (3.4)
2 [(311366 - B76) (B2zB6s - Bag) - (ByoBeg - 316326)] (3.5)

Bss
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For the operators we introduce the notation

G 1 32 2 - '
Vo = Ky ~= == + Ko —= Ve = V..V (3.8)
T 1 Bz 552 2 Az E‘E r r'r

Equation (3.3), in this case, assume the form ' -

3
5
=0l Ly (Bypde - Vow =0 - V.0 - 75 L(Byp)w + Z2 =0 (3.7)

where ¢ = ¢{a,B) is the stress function, analogous in the plane problem
to the functions of Airy, and w = w(w,B) is the displacement function.

From equations (3.7), for X = k2 = 0, we obtain the well-known
equations for the plane stress state of a plate LlfBik)w = 0, and for

the bending of an anisotropic plate, L(Bjy)w = 12Z/53.

Thus, making use’ of the mixed method of V. Z. Vlasov {ref. 5), we
obtaln a more compact representation of the differential equatlons of the

theory of anisotropic shells. The system (3.7) may be reduced to an equiv-

alent single equation of the eighth order. We set )
= L; (B3 )® ¢ = BRV,® (3.8)

From the second of equations (3.7), we obtain

1252 2

We note that thils equation 1s a generalization of -the equation given
by V. Z. Vlazov (ref. 7), for isotropic cylindrical shells, and can be
obtained by another method from the system 3.1 (table I), analogous to
the method by which B. G. Galerkin (ref. 9), obtained the equation of the
isotropic cylindrical shell {(ref. 8).

The internal forces, by equations (2.2), (2.3), (2.7), (2.8), and
(3.8), are as follows:

Q/

2 _-132

2
L3
22 % 55 So5p r°

. 1
T, = 38 — V. & To = B —
BZ aB r 2 g

°’|
l\)
<3
H
¢ ]
n
]
o

QU
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8% 1 2 1 2 2 P
1=12 EHA—Z—EZ"'BR 2 5pF | 016 BB 3F, L1(Bik) @
85 1 3% 1 3%
G2 = 12 ‘B 2 FaE TP T o m‘] Iy (Byd® (3:11)

3 2 2 2
d [: 2 9 19 13°7.
E=- 75 |B66 18 + Big -5 25 + Bag 5 —3| L1(Biu)®
12 B 3adp A2 32 2 3p2
83 83
Ny = - 73 C(Byy)In (B1x)® Ny = - 12 D(Byy)Iq(Bi)®  (3.12)
For the displacement of a point of the middle gsurface, we have

w = L1(Byy)® (3.13)

- - (| (B11Bes - BEe)k1 + (B12Bse - BisBee)® L 3¢
- P 11Bge - Ble/kL + 1266'16262A3aa+

]133*1:

[2(311326 - BypBie)ky - (BazBie - BizBae)kz 225 30238 *

2 2 1 83<I>
(By1Baz - BSz) - (BizBes - BieBae)| k1 - (BazBes - BZglkp 252 Sa3p2 +

1<I>
® 3p°

(BazBis - BizP2e)¥i 3 (3.14)

3
1 2 1 3%

V=E"8 1 (BazBes - Bzg)kz + (B12Bes - Blest)kl = —z+
66 BB

33‘1’
2(B ) - B Yk ] +
[ 25816 - B1oPag) ¥z = (B11B26 = Bi2Pis 225 8%

2 2 1 33@

1 334,

(By; + Bag - BizBielke PR

(3.15)
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4. LOCAL STABILITY AND VIBRATIONS

Repeating the considerations of V. Z. Vlasov (féf. 5) ylelds the
equations of the local stability of an isotropic shallow shell in the
form presented in table II.

Since, in this case, the components X end Y are pfoportional
to the curvatures k1 and ko, they can be neglecteq. From equation

(3.7), we then obtaln

5713 L1(Bix)e - Vpw = 0
(£.2)
0 1 3%y

1 dwé o 1 d%
KB pda * "2 57 3z | = O

V¢+5—3L(B )w-[T°—-——+zs
r 12 ik lAzaaz

Thus, the problem likewise reduces to the solution of two simultaneocus
equations for the stress function ®, and the displacement function w.
This system can be reduced to & single equation of the elghth order, for
a single function. From equation (3.9) we have .

12Q
Ll(Bik)L(Bik)@ + == V%q’-
& (4.3)

12[012 o1 a2 oiaZJ
= (10 S 2, 25 BB 358 * 2 5 5|1 (B = 0
g3 A8 da? AB B B2 BBZ

_ From equations (4.2) or (4.3), the equations of vibration of anigo-
tropic shallow shells can also easily be obtained by Introducing in the
computation, the inertis forces, and by setting ™ = T8 = 8° = 0.

Using 1 +to denote the specific weight of the shell, and g ‘the
acceleration of gravity, we obtain, from equations (7.8) or (7.9),
respectively,

1 &3 s 32
'é'g Ll(Bik)q) - VrW =0 Vr(‘p + 1z L(Bik)w + %‘-8'- st'—w' = 0 (4-4:)
: 1z - 15 32
L1 (Byy) L(Byy)® + Z ret & Sz In(By)® = 0 (4.5)_

_. This broblem, for shallow iéoﬁropic shells, was first solved in this
form by V. Z. Viasov (rer. 7). For k = ko = 0, there is obtalned, from

the equations glven, the fundemental equations of stability and vibratlon
of anisotropic plates by S. G. Lekhnitskii (ref. 8).

Qo
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TARLE I.

ufa,p) v(a,B) w(a,B) (5.1)

1 32.(.2 .2'_. aﬂ +B L.—a-a_ ._].'_.f.q.( + )..J;_ 32 + 1 32 __,{ k )a 1 3 X

P11 07 57 VP16 5B 3o P68 (7 57 [P16 7 5.2 T Pz tee)sp 5 tPes (@ pp (Xt P tBicke 5 +5(Breky + Bagkp)ay | &
1 +(+) 2 FUNE- P N 13 1 X! 3]
B16 F 5o 2 By 2 +Bgp m +Bog =5 Bz 92| D22 52 307 T 2026 KB 3o *Ps6 SE 3.7 $(Bazka + Bioky Jag + p{Bagka + gkl ) | 5
Lig 1k, + By plep) &+ 53y 3 1 3,1 3 2 2y, B Z
F{(Buky + By pkp 3o+ 5{BrgEy +Bagkalyy §(Bagkip + Byoky Jyr+ 1 (Bagka +Bigki )y | (Brukn® + 2By pkyky +Bagkp?) + 45 LiByy) -5

L(Bik) BJ-L 43,&4

4 Big AZ‘B —g + 2(Byp +2Bgg) ;@ —E

1 3t

4 By =3 53@55 322345;4

0T

%2%1T WL VOV
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Table IT.
u(a._, B) V((I-, ﬂ) w(o:., B) ( 1. l)
1 a7 1 a? 1 3% 32 3 13
1 ESEr P B T | Be g o HPiz + BeokiE aop + | APk + Biklg + i 55 ¢

(Blekl + stkz)aF + k18° B E-E-

1 32 1 3%

az
Basi}zgéz

- Iy kp8°

3 5(1"22"2 + By ) + kG & -% +

%%(stkz + Blﬁkl) + kaso% BBE

9 10
F{B1gky + Bogky) Frae 55

2Bagks, + Big) S + k13 § o +

1 d hi

2
! (Bse)+(By 11 +2By eyt k) =

F2¥1 WL VOVN

1T




